William conrad roentgen descubre los rayos x

William conrad roentgen descubre los rayos x

Tubo de rayos x

Las primeras aplicaciones de los rayos x se centraron en el diagnóstico, aunque a partir de 1897 se abrirá el camino de la aplicación terapéutica, de la mano de Freund, con su intento de tratar el nevus pilosus y su observación de las depilaciones radiológicas precursoras de la radiodermitis.
Efecto de una descarga de electricidad estática sobre la superficie de un film radiográfico. La descarga ha dibujado un patrón característico en forma de «arbol». Este es un ejemplo típico de un artefacto radiográfico.
Los rayos X y los rayos gamma comprenden la porción de las altas energías y cortas longitudes de onda del espectro electromagnético. Los rayos gamma y los rayos X de igual longitud de onda tienen idénticas propiedades. Características de la radiación ionizante se basan en las siguientes características de los rayos X y de los rayos gamma:
Toda materia está compuesta, en parte, por partículas de carga eléctrica negativa llamadas electrones. Cuando se calienta un material adecuado, algunos de sus electrones se vuelven inestables y escapan del material como electrones libres (conocido como emisión termoiónica). Esos electrones libres rodean el material como una nube de electrones. En un tubo de rayos X, la fuente de electrones se ubica en una estructura llamada el ‘cátodo’. Un espiral de alambre (el filamento) está contenido en el cátodo y funciona como un emisor de electrones. Cuando se aplica un amperio (en la práctica un miliamperio) a través del circuito de calentamiento del filamento, el flujo de corriente resultante lo calienta hasta la temperatura de emisión de electrones que permanecen juntos hasta que sean atraídos por el ánodo para producir rayos X.

rayos gamma

La denominación rayos X designa a una radiación corpuscular ionizante, invisible para el ojo humano, capaz de atravesar cuerpos opacos y de imprimir las películas fotográficas. Los rayos X tienen una serie de propiedades que son:
Los rayos X son una radiación corpuscular de la misma naturaleza que las ondas de radio, las ondas de microondas, los rayos infrarrojos, la luz visible, los rayos ultravioleta y los rayos gamma. La diferencia fundamental con los rayos gamma es su origen: los rayos gamma son radiaciones de origen nuclear que se producen por la desexcitación de un nucleón de un nivel excitado a otro de menor energía y en la desintegración de isótopos radiactivos, mientras que los rayos X surgen de fenómenos extranucleares, a nivel de la órbita electrónica, fundamentalmente producidos por desaceleración de electrones. La energía de los rayos X en general se encuentra entre la radiación ultravioleta y los rayos gamma producidos naturalmente. Los rayos X son una radiación ionizante porque al interactuar con la materia produce la ionización de los átomos de la misma, es decir, origina partículas con carga (iones).

tipos de rayos x

Los rayos X son difractados por los electrones que rodean los átomos por ser su longitud de onda del mismo orden de magnitud que el radio atómico. El haz de rayos X emergente tras esta interacción contiene información sobre la posición y tipo de átomos encontrados en su camino. Los cristales, gracias a su estructura periódica, dispersan elásticamente los haces de rayos X en ciertas direcciones y los amplifican por interferencia constructiva, originando un patrón de difracción.[n. 1]​ Existen varios tipos de detectores especiales para observar y medir la intensidad y posición de los rayos X difractados, y su análisis posterior por medios matemáticos permite obtener una representación a escala atómica de los átomos y moléculas del material estudiado.
Max von Laue realizó los primeros experimentos de cristalografía de rayos X en 1912. Von Laue, William Henry Bragg y William Lawrence Bragg desarrollaron inicialmente la teoría de difracción de cristales, tarea a la que pronto se sumaron otros científicos. A lo largo del siglo XX tuvieron lugar varios avances teóricos y técnicos, como la aparición de los superordenadores y el uso de sincrotrones para la producción de rayos X, que incrementaron la capacidad del método para determinar las propiedades estructurales de todo tipo de moléculas: sales, materiales inorgánicos complejos, proteínas y hasta componentes celulares como los ribosomas. Es posible trabajar con monocristales o con polvo microcristalino, consiguiéndose diferentes datos en ambos casos: para las aplicaciones que requieren solo una caracterización precisa de los parámetros de la red cristalina, puede ser suficiente la difracción de rayos X por polvo; para una dilucidación precisa de las posiciones atómicas es preferible trabajar con monocristales.

rayos x en inglés

Espectro emitido por un tubo de rayos X con un ánodo de rodio con un voltaje de 60 kV. La curva subyacente corresponde al bremsstrahlung, mientras que los picos corresponden a las líneas de emisión característica del rodio.
El tubo de rayos X consta de un cátodo, cuya función es emitir electrones hacia el ánodo. En los tubos modernos, el cátodo es un filamento, habitualmente de wolframio, calentado por medio de una corriente eléctrica de unos pocos amperios. Una porción de los electrones que circulan por el filamento se desprenden debido al efecto termoiónico.[1]​[2]​ El haz de electrones emitido por el cátodo se acelera mediante una fuente de alto voltaje alterna —por ejemplo, entre los 30 y 150 kV— Para mejorar el rendimiento de los tubos de rayos X y evitar que la corriente fluya hacia el cátodo y destruya el filamento durante el ciclo de voltaje inverso se usan rectificadores.[3]​
Tubo de Crookes de principios del siglo XX. El cátodo está a la derecha y el anticátodo en el centro. El electrodo en la parte superior a izquierda es el ánodo. El dispositivo en la parte superior sirve para mantener la presión del gas.

William conrad roentgen descubre los rayos x 2021

Acerca del autor

admin

Ver todos los artículos